European Commission
Research Programme of the Research Fund for Coal and Steel

ANGELHY

Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

WORK PACKAGE 5 - DELIVERABLE 5.1
 Proposals for Code amendments

Coordinator:
National Technical University of Athens - NTUA, Greece
Beneficiaries:
Arcelormittal Belval \& Differdange SA - AMBD, Luxembourg
Université de Liège - ULG, Belgium
Cosmote Kinites Tilepikoinonies AE - COSMOTE, Greece
Centre Technique Industriel de la Construction Metallique - CTICM, France
Sika France SAS - Sika France, France

Grant Agreement Number: 753993

AUTHORS:

ArcelorMittal Belval \& Differdange SA - AMBD, Luxembourg

Global R\&D
66, rue de Luxembourg
Esch-sur-Alzette
Author: Mike Tibolt

CENTRE TECHNIQUE INDUSTRIEL DE LA CONSTRUCTION METALLIQUE - CTICM

Steel Construction Research Division
Espace Technologique - Immeuble Apollo
L'Orme des Merisiers - F-91193 Saint Aubin
Authors: André Beyer, Alain Bureau

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Institute of Steel Structures
Iroon Polytechniou 9, 15780 Athens, Greece
Authors: Ioannis Vayas, Konstantinos Vlachakis

UNIVERSITE DE LIEGE

Faculty of Applied Sciences, ArGEnCo Department
Quartier Polytech 1, Allée de la Découverte, 9, B52/3, 4000 Liège, Belgium
Authors: Marios-Zois Bezas, Jean-Pierre Jaspart, Jean-François Demonceau

TABLE OF CONTENTS

1 Introduction 4
2 Code amendments for single angle members 4
3 Code amendments for built-up members 10
4 References 16

1 Introduction

The code amendments for single angle and built-up members are presented in this deliverable through tables, and referred to prEN1993-1-1 [1], EN1993-1-5[2] and EN1993-3-1[3]. In the tables, there is a summary of the existing codes on the relevant topic as well as the proposal which came out from the investigations of ANGELHY project; the differences in the proposed formulas are distinguished with red colour from the existing ones.
More details of all the proposed formulas are available in Deliverable 4.4 [4] and Deliverable 3.4 [5], including examples of application.

2 Code amendments for single angle members

The code amendments for single angle members are summarizes in the last column of Table 2.1.
Table 2.1: Code amendments for the design of single angle members

TOPIC	EXISTING RULES		GELHY PROPOSALS	CODE AMENDMENT
Classification system for equal leg angle cross-sections				
		$\begin{aligned} & G \\ & h, t \\ & u-u \\ & \mathrm{u} \\ & \mathrm{v}-\mathrm{v} \\ & \mathrm{y}, \mathrm{z} \end{aligned}$	centre of gravity geometrical properties major principal axis or w minor principal axis or stron geometrical axes	
Part in compression Axial force N	Class 3 limit 1. limit prEN1993-1-1, Table 7.3, sheet 3: $\frac{h}{t} \leq 15 \varepsilon \quad \text { and } \quad \frac{h}{t} \leq 11,5 \varepsilon$ 2. limit prEN1993-1-1, Table 7.3 , sheet 2 : $\frac{c}{t} \leq 14 \varepsilon$ 3. EN1993-1-5: $\frac{h}{t} \leq 13,9 \varepsilon$ 4. EN1993-3-1: $\begin{gathered} \frac{h}{t} \leq 15,9 \varepsilon \text { or } \frac{h-2 t}{t} \approx \frac{c}{t} \leq \\ 13,9 \varepsilon \end{gathered}$		$\begin{aligned} & \frac{\text { Class } 3 \text { limit: }}{c} \\ & \frac{\bar{t}}{} \leq 13,9 \varepsilon \\ & \text { where c=h-t-r } \end{aligned}$	prEN1993-1-1 (2019) §7.5 Classification of cross-sections Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections

ANGELHY - Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

Part in bending Strong axis bending M_{u}	$\frac{\text { Class 2 limit: }}{c}$ $\frac{t}{t} \leq 10 \varepsilon$ (from prEN1993-1-1- Table 7.3, sheet 2) $\frac{\text { Class } 3 \text { limit: }}{c} \leq 14 \varepsilon$ $\frac{t}{t}$ (from prEN1993-1-1- Table 7.3, sheet 2)	$\begin{aligned} & \frac{\text { Class } 2 \text { limit: }}{\frac{c}{t} \leq 16 \varepsilon} \\ & \frac{\text { Class } 3 \text { limit: }}{\frac{c}{t} \leq 26,3 \varepsilon} \\ & \text { where c=h-t-r } \end{aligned}$	prEN1993-1-1 (2019) §7.5 Classification of cross-sections Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections
Part in bending Weak axis bending M_{v} - tip in compression	Class 2 limit: $\frac{c}{t} \leq 16,6 \varepsilon$ (from prEN1993-1-1- Table 7.3, sheet 2 , with $\mathrm{a}_{\mathrm{c}}=0,6$) $\frac{\text { Class } 3 \text { limit: }}{\frac{c}{t} \leq 16 \varepsilon}$ (from prEN1993-1-1- Table 7.3, sheet 2 , with $\mathrm{K}_{\sigma}=0,57$)	$\begin{aligned} & \frac{\text { Class } 2 \text { limit: }}{\frac{c}{t} \leq 14 \varepsilon} \\ & \frac{\text { Class } 3 \text { limit: }}{c} \leq 26,9 \varepsilon \\ & \text { where c=h-t-r } \end{aligned}$	prEN1993-1-1 (2019) §7.5 Classification of cross-sections Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections
Part in bending Weak axis bending M_{v} -tip in tension	$\begin{gathered} \frac{\text { Class 2 limit: }}{\frac{c}{t} \leq 40 \varepsilon} \\ \text { (from prEN 1993-1-1- Table 7.3, } \\ \text { sheet } 2 \text {, with } \mathrm{a}_{\mathrm{c}}=0,4 \text {) } \end{gathered}$	$\begin{aligned} & \frac{\text { Class } 2 \text { limit: }}{\frac{c}{t} \leq 30 \varepsilon} \\ & \text { where c=h-t-r } \end{aligned}$	prEN1993-1-1 (2019) §7.5 Classification of cross-sections Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections
Cross-section characteristic resistance for equal leg angles			
Compression axial force N EN1993-1-1 \& EN1993-3- 1 combined with EN1993-1-5	Design resistance - class 1,2,3: $N_{R k}=\frac{A f_{y}}{\gamma_{M 0}}$ Design resistance - class 4: $N_{R k}=\frac{A_{e f f} f_{y}}{\gamma_{M 0}}$ where: $\begin{gathered} A_{e f f}=A-2 c t(1-\rho) \\ \bar{\lambda}_{\mathrm{p}}=\frac{\bar{b} / t}{18,6 \varepsilon} \end{gathered}$ EN 1993-1-5 defines $\bar{b}=\mathrm{h}$ EN 1993-3-1 defines $\bar{b}=\mathrm{h}-2 \mathrm{t}$ $\begin{gathered} -\rho=1, \quad \text { for } \bar{\lambda}_{\mathrm{p}} \leq 0,748 \\ -\rho=\frac{\bar{\lambda}_{\mathrm{p}}-0,188}{\bar{\lambda}_{p}^{2}}, \text { for } \bar{\lambda}_{\mathrm{p}}>0,748 \end{gathered}$	$\begin{aligned} & \text { Design resistance - class 1,2,3: } N_{c, R k}=\frac{A f_{y}}{\gamma_{M 0}} \\ & \text { Design resistance - class 4: } N_{c, R k}=\frac{A_{e f f} f_{y}}{\gamma_{M 0}} \\ & \text { where: } A_{e f f}=A-2 c t(1-\rho) \\ & \qquad \bar{\lambda}_{\mathrm{p}}=\frac{c / t}{18,6 \varepsilon} \\ & \text { where c=h-t-r } \\ & -\rho=1, \text { for } \bar{\lambda}_{\mathrm{p}} \leq 0,748 \\ & -\rho=\frac{\bar{\lambda}_{\mathrm{p}}-0,188}{\bar{\lambda}_{p}^{2}}, \text { for } \bar{\lambda}_{\mathrm{p}}>0,748 \end{aligned}$	EN1993-1-5 In $\S 4.4(2), \bar{b}=\mathrm{h}$ should be replaced by $\bar{b}=\mathrm{c}$ for equal leg angle profiles

ANGELHY - Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

Strong axis bending M_{u} prEN1993-1-1	Design resistance: $M_{u, R k}=W_{u} \frac{f_{y}}{\gamma_{M 0}}$ where, $\begin{array}{cc} \mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{pl}, \mathrm{u}} & \text { for class } 1 \text { or } 2 \\ \mathrm{~W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{el}, \mathrm{u}} & \text { for class } 3 \\ \mathrm{~W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{eff}, \mathrm{u}} & \text { for class } 4 \end{array}$	Design resistance: $M_{u, R k}=W_{u} \frac{f_{y}}{\gamma_{M 0}}$ Where $W_{u}=\alpha_{i, u} W_{e l, u}, \mathrm{i}=2,3,4$ $\alpha_{2, u}=1,5 \quad$ for class 1 or 2 $\alpha_{3, u}=\left[1+\left(\frac{26,3 \varepsilon-c / t}{26,3 \varepsilon-16 \varepsilon}\right) \cdot(1,5-1)\right]$ for class 3 $\alpha_{4, u}=W_{\text {eff,u }} / W_{\mathrm{el}, \mathrm{u}}=\rho_{\mathrm{u}}{ }^{2} \quad$ for class 4 $\begin{gathered} \bar{\lambda}_{\mathrm{p}}=\frac{c / t}{35,58 \varepsilon} \\ -\rho_{\mathrm{u}}=1, \text { for } \bar{\lambda}_{\mathrm{p}} \leq 0,748 \\ -\rho_{u}=\frac{\bar{\lambda}_{\mathrm{p}}-0,188}{\bar{\lambda}_{p}^{2}}, \text { for } \bar{\lambda}_{\mathrm{p}}>0,748 \end{gathered}$	prEN1993-1-1 (2019) §8.2.2.6 Section properties for the characteristic resistances Table 8.1 should be modified properly, so as to include the properties for angle sections EN1993-1-5 In §4.4, Table 4.2 K σ factors for fix-free boundary conditions should be added
Weak axis bending M_{v} tip in compression prEN1993-1-1	Design resistance: $M_{v, R k}=W_{v} \frac{f_{y}}{\gamma_{M 0}}$ where, $\begin{array}{cc} \mathrm{W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{pl}, \mathrm{v}} & \text { for class } 1 \text { or } 2 \\ \mathrm{~W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{el}, \mathrm{v}} & \text { for class } 3 \\ \mathrm{~W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{eff}, \mathrm{v}} & \text { for class } 4 \end{array}$	Design resistance: $M_{v, R k}=W_{v} \frac{f_{y}}{\gamma_{M_{0}}}$ Where $W_{v}=\alpha_{i, \mathrm{v}} W_{e l, \mathrm{v}}, \mathrm{i}=2,3,4$ $\alpha_{2, v}=\mathrm{W}_{\mathrm{pl}, \mathrm{v}} / \mathrm{W}_{\mathrm{el}, \mathrm{v}} \quad$ for class 1 or 2 $\alpha_{3, v}=\left[1+\left(\frac{26,9 \varepsilon-c / t}{26,9 \varepsilon-14 \varepsilon}\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{pl}, \mathrm{v}}}{\mathrm{W}_{\mathrm{el}, \mathrm{v}}}-1\right)\right] \quad$ for class 3 $\alpha_{4, \mathrm{v}}=\mathrm{W}_{\mathrm{eff}, \mathrm{v}} / \mathrm{W}_{\mathrm{el}, \mathrm{v}}=0,94 \cdot \rho_{\mathrm{v}}{ }^{2} \quad$ for class 4 $\begin{gathered} \bar{\lambda}_{\mathrm{p}}=\frac{c / t}{36,48 \varepsilon} \\ -\rho_{v}=1, \quad \text { for } \bar{\lambda}_{\mathrm{p}} \leq 0,748 \\ -\rho_{v}=\frac{\bar{\lambda}_{\mathrm{p}}-0,188}{\bar{\lambda}_{p}^{2}}, \text { for } \bar{\lambda}_{\mathrm{p}}>0,748 \end{gathered}$	prEN1993-1-1 (2019) §8.2.2.6 Section properties for the characteristic resistances Table 8.1 should be modified properly, so as to include the properties for angle sections EN1993-1-5 In §4.4, Table $4.2 \mathrm{~K} \sigma$ factors for fix-free boundary conditions should be added
Weak axis bending M_{v} tip in tension prEN1993-1-1	Design resistance: $M_{v, R k}=W_{v} \frac{f_{y}}{\gamma_{M 0}}$ where, $\begin{gathered} \mathrm{W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{pl}, \mathrm{v}} \quad \text { for class } 1 \text { or } 2 \\ \mathrm{~W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{el}, \mathrm{v}} \\ \text { for class } 3 \\ \mathrm{~W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{eff}, \mathrm{v}} \\ \text { for class } 4 \end{gathered}$	Design resistance: $M_{v, R k}=W_{p l, v} \frac{f_{y}}{\gamma_{M 0}}$	prEN1993-1-1 (2019) §8.2.2.6 Section properties for the characteristic resistances Table 8.1 should be modified properly, so as to include the properties for angle sections

$$
\begin{aligned}
& \text { ANGELHY - Innovative solutions for design and strengthening of telecommunications } \\
& \text { and transmission lattice towers using large angles from high strength steel and hybrid } \\
& \text { techniques of angles with FRP strips }
\end{aligned}
$$

Member resistance - Stability for equal leg angles

Axial force N prEN1993-1-1	prEN1993-1-1 (2019): §8.3.1 Uniform members in compression Curve b or a are used, based on steel grade according to prEN1993-1-1 (2019) Using of relevant buckling mode for the evaluation of the non-dimensional slenderness	Design resistance - class 1,2,3: $N_{b, R d}=\frac{\chi_{\min } A f_{y}}{\gamma_{M 1}}$ where: $\quad \chi_{\text {min }}=\min \left\{\chi_{\mathrm{u}}, \chi_{\mathrm{v}}\right\}$ $\bar{\lambda}_{\mathrm{u}}=\sqrt{\frac{\mathrm{Af}_{\mathrm{y}}}{\mathrm{~N}_{\mathrm{cr}, \mathrm{u}}}} \quad, \quad \bar{\lambda}_{\mathrm{v}}=\sqrt{\frac{\mathrm{Af}}{\mathrm{~N}_{\mathrm{cr}, \mathrm{v}}}}$ $\chi_{\mathrm{u}}, \chi_{\mathrm{v}}$ derived from buckling curves \mathbf{a} and \mathbf{b} (prEN1993-1-1:2019) Design resistance - class 4: $N_{R d}=\frac{\chi_{\min } A_{e f f} f_{y}}{\gamma_{M 1}}$ where: $\quad \chi_{\text {min }}=\min \left\{\chi_{\mathrm{u}}, \chi_{\mathrm{v}}\right\}$ $\chi_{\mathrm{u}}, \chi_{\mathrm{v}}$ derived from buckling curves \mathbf{a} and \mathbf{b} (prEN1993-1-1:2019) as for class 1 to 3 cross-sections $\begin{gathered} A_{e f f}=A-2 c t(1-\rho) \\ \bar{\lambda}_{\mathrm{p}}=\sqrt{\chi_{\min }} \frac{c / t}{18,6 \varepsilon} \\ \text { where c=h-t-r } \\ -\rho=1, \text { for } \bar{\lambda}_{\mathrm{p}} \leq 0,748 \\ -\rho=\frac{\bar{\lambda}_{\mathrm{p}}-0,188}{\bar{\lambda}_{p}^{2}}, \text { for } \bar{\lambda}_{\mathrm{p}}>0,748 \end{gathered}$	prEN1993-1-1 (2019) §8.3.1.2 Slenderness of compression members A sub-paragraph should be added for angle cross-sections to use $\bar{\lambda}_{b}=\left\{\bar{\lambda}_{u} ; \bar{\lambda}_{\mathrm{v}}\right\}$
$\begin{gathered} \text { Strong axis } \\ \text { bending } \mathrm{M}_{\mathrm{u}} \\ \text { prEN1993-1-1 } \end{gathered}$	prEN1993-1-1 (2019): §8.3.2 Uniform members in bending Curve d is used	Design resistance: $M_{u, R d}=\chi_{L T} W_{u} \frac{f_{y}}{\gamma_{M 1}}$ where: $\quad \bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{W_{u} \cdot f_{y}}{M_{\mathrm{cr}}}}$ χ_{LT} as function of the LTB slenderness derived from buckling curve a. Buckling curve is given from the equations $\begin{gathered} \chi_{L T}=\frac{1}{\Phi_{L T}+\sqrt{\Phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \\ \text { but }\left\{\begin{array}{c} \chi_{L T} \leq 1,0 \\ \chi_{L T} \leq 1 / \bar{\lambda}_{L T}^{2} \end{array}\right. \\ \Phi_{L T}=0,5\left[1+a_{L T}\left(\bar{\lambda}_{L T}-0,4\right)+\bar{\lambda}_{L T}^{2}\right] \end{gathered}$ LTB may be ignored and $\chi_{\mathrm{LT}}=1,0$ when one of the following conditions apply: - $\bar{\lambda}_{\mathrm{LT}} \leq \bar{\lambda}_{\mathrm{LT}, 0}$ with $\bar{\lambda}_{\mathrm{LT}, 0}=0,4$ - $\frac{M_{E d}}{M_{c r}} \leq \bar{\lambda}_{\mathrm{LT}, 0}{ }^{2}$	prEN1993-1-1 (2019) §8.3.2.3 Buckling reduction factors χ_{LT} for lateral torsional buckling In Table 8.4, the proposed buckling curve d for angles should be changed to a. A sub-paragraph should be added for the definition of the buckling curves (with doubling the plateau)

ANGELHY - Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

		- $\frac{N_{E d}}{N_{b u, R d}}>0,5$ - $\frac{N_{E d}}{N_{b v, R d}}>0,5$ Critical LTB moment: $M_{c r}=C_{b} \frac{0,46 \cdot E \cdot h^{2} \cdot t^{2}}{l}$ $C_{b}=\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{C}} \leq 1.5$ For linear moment distribution with -1 $\begin{gathered} \leq \psi=\frac{M_{2}}{M_{1}} \leq 1, \quad \mathrm{C}_{\mathrm{b}}=\frac{12,5}{7,5+5 \psi} \\ W_{u}=\alpha_{i, u} W_{e l, u}, \mathrm{i}=2,3,4 \\ \alpha_{2, \mathrm{u}}=1,5 \quad \text { for class } 1 \text { or } 2 \end{gathered}$ $\alpha_{3, u}=\left[1+\left(\frac{26,3 \varepsilon-c / t}{26,3 \varepsilon-16 \varepsilon}\right) \cdot(1,5-1)\right]$ for class 3 $\alpha_{4, \mathrm{u}}=\mathrm{W}_{\mathrm{eff}, \mathrm{u}} / \mathrm{W}_{\mathrm{el}, \mathrm{u}}=\rho_{\mathrm{u}}{ }^{2} \quad$ for class 4 $\begin{gathered} \bar{\lambda}_{\mathrm{p}}=\sqrt{\chi_{L T}} \frac{c / t}{35,58 \varepsilon} \\ -\rho_{\mathrm{u}}=1, \text { for } \bar{\lambda}_{\mathrm{p}} \leq 0,748 \\ -\rho_{u}=\frac{\bar{\lambda}_{\mathrm{p}}-0,188}{\bar{\lambda}_{p}^{2}}, \text { for } \bar{\lambda}_{\mathrm{p}}>0,748 \end{gathered}$	
Weak axis bending M_{v} prEN1993-1-1	Same with the cross-section resistance, independent of the member length	Same with the cross-section resistance, independent of the member length	Same as above
$\begin{gathered} \mathrm{N}+\mathrm{M}_{\mathrm{u}}+\mathrm{M}_{\mathrm{v}} \\ \text { prEN1993-1-1 } \end{gathered}$	prEN1993-1-1 (2019): §8.3.3 Uniform members in bending and axial compression $\begin{aligned} & \frac{\mathrm{N}_{\mathrm{Ed}}}{\chi_{\mathrm{y}}^{\mathrm{N}_{\mathrm{Rk}}}} \frac{\gamma_{\mathrm{M} 1}}{}+\mathrm{k}_{\mathrm{yy}} \frac{\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}+\Delta \mathrm{M}_{\mathrm{y}, \mathrm{Ed}}}{\chi_{\mathrm{LT}} \frac{\mathrm{M}_{\mathrm{y}, \mathrm{Rk}}}{\gamma_{\mathrm{M} 1}}}+\mathrm{k}_{\mathrm{yz}} \\ & \frac{\mathrm{~N}_{\mathrm{Ed}}}{\chi_{\mathrm{z}} \mathrm{~N}_{\mathrm{Rk}}} \\ & \gamma_{\mathrm{M} 1} \end{aligned}+\mathrm{k}_{\mathrm{zy}} \frac{\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}+\Delta \mathrm{M}_{\mathrm{y}, \mathrm{Ed}}}{\chi_{\mathrm{LT}} \frac{\mathrm{M}_{\mathrm{y}, \mathrm{Rk}}}{\gamma_{\mathrm{M} 1}}}+\mathrm{k}_{\mathrm{zz}} .$	$\begin{gathered} \left(\frac{N_{E d}}{N_{R d}}+k_{u u} \frac{M_{u, E d}}{M_{u, R d}}\right)^{\xi}+k_{u v} \frac{M_{v, E d}}{M_{v, R d}} \leq 1 \\ \left(\frac{N_{E d}}{N_{R d}}+k_{v u} \frac{M_{u, E d}}{M_{u, R d}}\right)^{\xi}+k_{v v} \frac{M_{v, E d}}{M_{v, R d}} \leq 1 \\ k_{u u}=\frac{C_{u}}{1-\frac{N_{E d}}{N_{c r r u}} \quad ; \quad k_{u v}=C_{v} ; k_{v u}=C_{u}} \begin{array}{c} ; \quad k_{v v}=\frac{C_{v}}{1-\frac{N_{E d}}{N_{c r, v}}} \\ \mathrm{C}_{\mathrm{u}}=0,6+0,4 \psi_{\mathrm{u}} \quad ; \quad-1 \leq \psi_{\mathrm{u}}=\frac{M_{2 u}}{M_{1 u}} \leq 1 \\ \mathrm{C}_{\mathrm{v}}=0,6+0,4 \psi_{\mathrm{v}} \quad ; \quad-1 \leq \psi_{\mathrm{v}}=\frac{M_{2 v}}{M_{1 v}} \leq 1 \\ \text { Interaction factor } \xi: \\ \mathrm{c} / \mathrm{t} \leq 16 \varepsilon: \quad \xi=2 \\ 16 \varepsilon<\mathrm{c} / \mathrm{t}<26,3 \varepsilon: \\ \xi=\left[1+\left(\frac{26,3 \varepsilon-c / t}{26,3 \varepsilon-16 \varepsilon}\right) \cdot(2-1)\right] \\ \mathrm{c} / \mathrm{t}>26,3 \varepsilon: \end{array} \quad \xi=1 \end{gathered}$	prEN1993-1-1 (2019) §8.3.3 Uniform members in bending and axial compression A sub-paragraph should be added for equal leg angle profiles

ANGELHY - Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

$\begin{gathered} \text { General } \\ \text { method } \\ \text { prEN1993-1-1 } \end{gathered}$	prEN1993-1-1 (2019): §8.3.4 General method for lateral and lateral torsional buckling of structural components $\begin{gathered} \chi_{o p} \cdot a_{u l t, k} \geq 1,0 \\ \chi_{o p}=\min \left\{\chi_{b} ; \chi_{L T}\right\} \\ \alpha_{u l t, k}=\frac{\sigma_{\max }}{f_{y}}=\frac{\sigma_{N}}{f_{y}}+\frac{\sigma_{e_{0}}}{f_{y}}+ \\ \overline{\lambda_{o p}}=\sqrt{\frac{\alpha_{u l t, k}}{\alpha_{c r, o p}}} \end{gathered}$	$\begin{gathered} \chi_{o p} \cdot a_{u l t, k} \geq 1,0 \\ \chi_{o p}=\min \left\{\chi_{u} ; \chi_{v}\right\} \\ \alpha_{u l t, k}=\frac{\sigma_{\max }}{f_{y}}=\frac{\sigma_{N}}{f_{y}}+\frac{\sigma_{e_{0}}}{f_{y}}+\frac{\sigma_{M}}{f_{y}} \\ \overline{\lambda_{o p}}=\sqrt{\frac{\alpha_{u l t, k}}{\alpha_{c r, o p}}} \end{gathered}$ Where $\alpha_{c r, o p}$ is the minimum load amplifier for the design loads to reach the elastic critical load of the structural component associated to weak axis buckling.	prEN1993-1-1 (2019) §8.3.4 General method for lateral and lateral torsional buckling of structural components A sub-paragraph should be added with clarifications of the use of general method for equal leg angle profiles
Segment instability of latice towers			
Segment instability of pylons	This mode of instability is not covered by the current codes	Two models are proposed: Simplified model: $\quad a_{c r}=\frac{2 \pi^{2} E I_{y}}{L^{2} \cdot\left(P_{1}+P_{2}\right)}$ Final model: $\quad a_{c r}=\frac{N_{c r}}{P_{1}+P_{2}}$ $\begin{gathered} N_{c r}=\frac{\pi^{2} E I_{y, t o t}}{L^{2}}+\frac{3}{16} K_{T} L \\ \mathrm{~K}_{\mathrm{T}}=\frac{4}{\mathrm{~m}^{2}}\left(2 \mathrm{R}_{\text {mean }}\right) . \\ R_{\text {mean }}=\frac{3 C}{2 L_{\text {ext }}} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{i}^{2}} \end{gathered}$ The ultimate resistance in both cases is $\frac{1}{a_{u}}=\frac{1}{a_{c r}}+\frac{0,96}{a_{p l}}$	EN1993-3-1 §6.3.1 Resistance of members-compression members A sub-paragraph should be added, indicated to check the possible appearance of a segment instability. An Annex should be added, covering the calculations of the segment instability
			$l=\frac{2 \cdot N_{p l}}{P_{1}+P_{2}}$ cross-section $\left(\mathrm{N}_{\mathrm{pl}}=\mathrm{Af}_{\mathrm{y}}\right)$ geometrical axis of the ; geometrical axis of both eg $l_{i}=L / m$ separated by the accuracy of the value of $\mathrm{m} \leq 6$ (i.e for in the leg). tion; mber of the leg;

| d_{i} | is the horizontal distance of the longitudinal axis of the
 diagonal from the longitudinal axis of the main leg, at the i
 horizontal level. |
| :--- | :--- | :--- |

3 Code amendments for built-up members

Table 3.1 summarizes the ANGELHY proposals for the design of built-up members. These modifications might be introduced into section 8.4 .5 of prEN 1993-1-1 in order to propose a design model.

Table 3.1: Code amendments for the design of closely spaced built-up sections

TOPIC	EXISTING RULES	ANGELHY PROPOSALS	$\begin{gathered} \text { CODE } \\ \text { AMENDMENT } \end{gathered}$
Buckling resistance of back to back connected angle section members			
Major axis buckling	$\frac{\text { prEN1993-1-1 (2019): }}{\text { If } \mathrm{a} \leq 15 \mathrm{i}_{\mathrm{v}}:}$ Member may be treated as integral without considering the influence of the connections. Buckling resistance is determined based on: - Reduction curve bsteel grades up to S420 - Reduction curve a - for higher steel grades up to S700 If $\mathrm{a}>15 \mathrm{i}_{\mathrm{v}}$: The influence of connections and the resulting shear stiffness should be accounted for. No design proposal is provided. EN 50341-1 (2015) Independently from the packing plate distance, the buckling	Buckling resistance: $\frac{N_{E d}}{\chi \frac{A f_{y}}{\gamma_{M 1}}} \leq 1,0$ χ : is the buckling reduction factor determined based on the slenderness $\bar{\lambda}_{s v}$ and buckling curve b $\bar{\lambda}_{S v}=\sqrt{\frac{A f_{y}}{N_{c r, S V}}}$ The critical axial force $N_{c r, S V}$ considering the influence of the shear stiffness is calculated as follows: $N_{c r, S V}=\frac{1}{\frac{1}{N_{c r}}+\frac{1}{s_{v}}}$	prEN1993-1-1 (2019) §8.4.5 Closely spacedbuilt up members

ANGELHY - Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

Resistance of star battened back to back connected angle section members

$\mathrm{v}-\mathrm{v}$: Major axis
u-u: Minor axis
h_{0} : Distance between the centroids of the angle sections
a: Distance between the packing plates
i_{v} : Radius of gyration about the angle section's minor axis (see Table 2.1)
L: Member length
i_{z} : Radius of gyration of the built-up section member considered as integral about z-z

Flexural buckling
$\frac{\text { prEN1993-1-1 (2019): }}{\text { If } \mathrm{a} \leq 70 \mathrm{i}_{\mathrm{y}}:}$ If $\mathrm{a} \leq 70 \mathrm{i}_{\mathrm{v}}$: Member may be treated as integral without considering the influence of the connections. Buckling resistance is determined based on:

- Reduction curve bsteel grades up to S420
- Reduction curve a - for higher steel grades up to S700

If $\mathrm{a}>70 \mathrm{iv}$:
The influence of connections and the resulting shear stiffness should be accounted for. No design proposal is provided.

EN 50341-1 (2015)
Independently from the packing plate distance, the buckling resistance is based the effective geometric slenderness $\lambda_{z i}$:

$$
\lambda_{z i}=\sqrt{\lambda_{z}^{2}+\lambda_{1}^{2} \frac{m}{2}}
$$

λ_{z} : geometric slenderness of the built-up member considered as uniform $-\lambda_{z}=\mathrm{L} / \mathrm{i}_{2}$

Buckling resistance:

The buckling resistance should be checked about both principle axis. For simplicity the index indicating the relevant axis is omitted in the following.
$\frac{N_{E d}}{\chi \frac{A f_{y}}{\gamma_{M 1}}} \leq 1,0$
χ : is the buckling reduction factor determined based on the slenderness $\bar{\lambda}_{S v}$ and buckling curve b
$\bar{\lambda}_{s v}=\sqrt{\frac{A f_{y}}{N_{c r, S V}}}$
prEN1993-1-1 (2019)
§8.4.5 Closely spacedbuilt up members

ANGELHY - Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

 and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

| | | $\bar{\lambda}_{L T}=\sqrt{\frac{0,9 \mathrm{~W}_{\mathrm{u}} f_{y}}{M_{c r}}}$
 $M_{c r}=C_{b} \pi \frac{\sqrt{E I_{v} G I_{t}}}{L}$
 $I_{\mathrm{v}} \quad$
 is the second moment of area of the
 built-up member considered as integral
 (considering $\left.\mathrm{S}_{\mathrm{v}}=\infty\right)$ about its minor
 axis |
| :--- | :--- | :--- | :--- |

4 References

[1] prEN1993-1-1: Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels, Comité Européen de Normalisation (CEN), 2019.
[2] EN1993-1-5: Design of steel structures - Part 1-5: Plate structural elements, Brussels, Comité Europeen de Normalisation (CEN), 2006.
[3] EN 1993-3-1: Design of steel structures - Part 3-1: Towers, musts and chimneys. Tower and masts, Brussels, Comité Européen de Normalisation (CEN), 2005.
[4] Tibolt M, Vayas I, Vlachakis K, Giquel Y, Reygner S, Bezas MZ, Jaspart JP, Demonceau JF, Deliverable 4.4: Design guide and recommendations, Research Report-ANGELHY project, 2019.
[5] Beyer, A, Bureau, A, Deliverable 3.4 Design rules for closely spaced built-up angle section members, Research Report ANGELHY project, 2020.
[6] EN 50341-1: Overhead electrical lines exceeding AC 1 kV - Part 1: General requirements Common specifications, Brussels, CEN/CENELEC, 2015.

