

European Commission Research Programme of the Research Fund for Coal and Steel

ANGELHY

Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

WORK PACKAGE 5 – DELIVERABLE 5.1

Proposals for Code amendments

Coordinator:

National Technical University of Athens - NTUA, Greece

Beneficiaries:

Arcelormittal Belval & Differdange SA - AMBD, Luxembourg

Université de Liège – ULG, Belgium

Cosmote Kinites Tilepikoinonies AE - COSMOTE, Greece

Centre Technique Industriel de la Construction Metallique - CTICM, France

Sika France SAS - Sika France, France

Grant Agreement Number: 753993

04/12/2020

AUTHORS:

ArcelorMittal Belval & Differdange SA – AMBD, Luxembourg

Global R&D 66, rue de Luxembourg Esch-sur-Alzette **Author:** Mike Tibolt

CENTRE TECHNIQUE INDUSTRIEL DE LA CONSTRUCTION METALLIQUE - CTICM

Steel Construction Research Division Espace Technologique – Immeuble Apollo L'Orme des Merisiers – F-91193 Saint Aubin **Authors:** André Beyer, Alain Bureau

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Institute of Steel Structures Iroon Polytechniou 9, 15780 Athens, Greece **Authors**: Ioannis Vayas, Konstantinos Vlachakis

UNIVERSITE DE LIEGE

Faculty of Applied Sciences, ArGEnCo Department Quartier Polytech 1, Allée de la Découverte, 9, B52/3, 4000 Liège, Belgium **Authors:** Marios-Zois Bezas, Jean-Pierre Jaspart, Jean-François Demonceau

TABLE OF CONTENTS

1	Introduction	4
2	Code amendments for single angle members	4
3	Code amendments for built-up members	10
4	References	16

1 Introduction

The code amendments for single angle and built-up members are presented in this deliverable through tables, and referred to prEN1993-1-1 [1], EN1993-1-5[2] and EN1993-3-1[3]. In the tables, there is a summary of the existing codes on the relevant topic as well as the proposal which came out from the investigations of ANGELHY project; the differences in the proposed formulas are distinguished with red colour from the existing ones.

More details of all the proposed formulas are available in Deliverable 4.4 [4] and Deliverable 3.4 [5], including examples of application.

2 Code amendments for single angle members

The code amendments for single angle members are summarizes in the last column of Table 2.1.

Table 2.1: Code amendments for the design of single angle members

			1
Part in	$\frac{\text{Class 2 limit:}}{\frac{c}{t} \le 10\varepsilon}$ (from prEN1993-1-1- Table 7.3, sheet 2)	$\frac{\text{Class 2 limit:}}{\frac{c}{t} \le 16\varepsilon}$	prEN1993-1-1 (2019) §7.5 Classification of cross-sections
bending Strong axis bending M _u	$\frac{\text{Class 3 limit:}}{\frac{c}{t} \le 14\varepsilon}$ (from prEN1993-1-1- Table 7.3, sheet 2)	$\frac{\text{Class 3 limit:}}{\frac{c}{t} \le 26,3\varepsilon}$ where c=h-t-r	Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections
Part in bending Weak axis bending M _v - tip in compression	$\frac{\text{Class 2 limit:}}{\frac{c}{t} \le 16,6\varepsilon}$ (from prEN1993-1-1- Table 7.3, sheet 2, with a _c =0,6) $\frac{\text{Class 3 limit:}}{\frac{c}{t} \le 16\varepsilon}$ (from prEN1993-1-1- Table 7.3, sheet 2, with K _o =0,57)	$\frac{\text{Class 2 limit:}}{\frac{c}{t} \le 14\varepsilon}$ $\frac{\text{Class 3 limit:}}{\frac{c}{t} \le 26,9\varepsilon}$ where c=h-t-r	prEN1993-1-1 (2019) §7.5 Classification of cross-sections Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections
Part in bending Weak axis bending M _v -tip in tension	$\frac{\text{Class 2 limit:}}{\frac{c}{t} \le 40\varepsilon}$ (from prEN1993-1-1- Table 7.3, sheet 2, with a _c =0,4)	$\frac{Class \ 2 \ limit:}{\frac{C}{t} \le 30\varepsilon}$ where c=h-t-r	prEN1993-1-1 (2019) §7.5 Classification of cross-sections Table 7.3 (sheet 3 of 3) should be modified properly, so as to cover the classifications of angle sections
	Cross-section charact	teristic resistance for equal leg angles	
Compression axial force N EN1993-1-1 & EN1993-3- 1 combined with EN1993- 1-5	Design resistance - class 1,2,3: $N_{Rk} = \frac{Afy}{\gamma_{M0}}$ Design resistance - class 4: $N_{Rk} = \frac{A_{eff}fy}{\gamma_{M0}}$ where: $A_{eff} = A - 2ct(1 - \rho)$ $\bar{\lambda}_{p} = \frac{\bar{b}/t}{18,6\varepsilon}$ EN 1993-1-5 defines $\bar{b} = h$ EN 1993-3-1 defines $\bar{b} = h-2t$ - $\rho = 1$, for $\bar{\lambda}_{p} \le 0,748$ - $\rho = \frac{\bar{\lambda}_{p} - 0,188}{\bar{\lambda}_{p}^{2}}$, for $\bar{\lambda}_{p} > 0,748$	Design resistance - class 1,2,3: $N_{c,Rk} = \frac{Af_y}{\gamma_{M0}}$ Design resistance - class 4: $N_{c,Rk} = \frac{A_{eff}f_y}{\gamma_{M0}}$ where: $A_{eff} = A - 2ct(1 - \rho)$ $\bar{\lambda}_p = \frac{c/t}{18,6\varepsilon}$ where c=h-t-r - $\rho = 1$, for $\bar{\lambda}_p \le 0,748$ - $\rho = \frac{\bar{\lambda}_p - 0,188}{\bar{\lambda}_p^2}$, for $\bar{\lambda}_p > 0,748$	EN1993-1-5 In §4.4 (2), $\overline{b} = h$ should be replaced by $\overline{b} = c$ for equal leg angle profiles

Page 6

Strong axis bending M _u prEN1993-1-1	Design resistance: $M_{u,Rk} = W_u \frac{f_y}{\gamma_{M0}}$ where, $W_u = W_{pl,u}$ for class 1 or 2 $W_u = W_{el,u}$ for class 3 $W_u = W_{eff,u}$ for class 4	Design resistance: $M_{u,Rk} = W_u \frac{f_v}{\gamma_{M0}}$ Where $W_u = \alpha_{i,u} W_{el,u}$, $i = 2, 3, 4$ $\alpha_{2,u} = 1,5$ for class 1 or 2 $\alpha_{3,u} = \left[1 + \left(\frac{26,3\varepsilon - c/t}{26,3\varepsilon - 16\varepsilon}\right) \cdot (1,5 - 1)\right]$ for class 3 $\alpha_{4,u} = W_{eff,u}/W_{el,u} = \rho_u^2$ for class 4 $\bar{\lambda}_p = \frac{c/t}{35,58\varepsilon}$ $-\rho_u = 1$, for $\bar{\lambda}_p \le 0,748$ $-\rho_u = \frac{\bar{\lambda}_p - 0,188}{\bar{\lambda}_p^2}$, for $\bar{\lambda}_p > 0,748$	prEN1993-1-1 (2019) §8.2.2.6 Section properties for the characteristic resistances Table 8.1 should be modified properly, so as to include the properties for angle sections EN1993-1-5 In §4.4, Table 4.2 Kσ factors for fix-free boundary conditions should be added
Weak axis bending M _v tip in compression prEN1993-1-1	Design resistance: $M_{\nu,Rk} = W_{\nu} \frac{f_{\nu}}{\gamma_{M0}}$ where, $W_{\nu} = W_{pl,\nu} \text{ for class 1 or 2}$ $W_{\nu} = W_{el,\nu} \text{ for class 3}$ $W_{\nu} = W_{eff,\nu} \text{ for class 4}$	Design resistance: $M_{\nu,Rk} = W_{\nu} \frac{f_{\nu}}{\gamma_{M0}}$ Where $W_{\nu} = \alpha_{i,\nu} W_{el,\nu}$, $i = 2, 3, 4$ $\alpha_{2,\nu} = W_{pl,\nu}/W_{el,\nu}$ for class 1 or 2 $\alpha_{3,\nu} = \left[1 + \left(\frac{26.9\varepsilon - c/t}{26.9\varepsilon - 14\varepsilon}\right) \cdot \left(\frac{W_{pl,\nu}}{W_{el,\nu}} - 1\right)\right]$ for class 3 $\alpha_{4,\nu} = W_{eff,\nu}/W_{el,\nu} = 0.94 \cdot \rho_{\nu}^2$ for class 4 $\bar{\lambda}_p = \frac{c/t}{36.48\varepsilon}$ $-\rho_{\nu} = 1$, for $\bar{\lambda}_p \le 0.748$ $-\rho_{\nu} = \frac{\bar{\lambda}_p - 0.188}{\bar{\lambda}_p^2}$, for $\bar{\lambda}_p > 0.748$	prEN1993-1-1 (2019) §8.2.2.6 Section properties for the characteristic resistances Table 8.1 should be modified properly, so as to include the properties for angle sections EN1993-1-5 In §4.4, Table 4.2 Kσ factors for fix-free boundary conditions should be added
Weak axis bending Mv tip in tension prEN1993-1-1	Design resistance: $M_{\nu,Rk} = W_{\nu} \frac{f_{y}}{\gamma_{M0}}$ where, $W_{\nu} = W_{pl,\nu} \text{ for class 1 or 2}$ $W_{\nu} = W_{el,\nu} \text{ for class 3}$ $W_{\nu} = W_{eff,\nu} \text{ for class 4}$	Design resistance: $M_{\nu,Rk} = W_{pl,\nu} \frac{f_y}{\gamma_{M0}}$	prEN1993-1-1 (2019) §8.2.2.6 Section properties for the characteristic resistances Table 8.1 should be modified properly, so as to include the properties for angle sections

Member resistance - Stability for equal leg angles					
Axial force N prEN1993-1-1	prEN1993-1-1 (2019): §8.3.1 Uniform members in compression Curve b or a are used, based on steel grade according to prEN1993-1-1 (2019) Using of relevant buckling mode for the evaluation of the non-dimensional slenderness	Design resistance - class 1,2,3: $N_{b,Rd} = \frac{\chi_{min}Af_y}{\gamma_{M_1}}$ where: $\chi_{min} = \min\{\chi_u, \chi_v\}$ $\bar{\lambda}_u = \sqrt{\frac{Af_y}{N_{cr,u}}}$, $\bar{\lambda}_v = \sqrt{\frac{Af_y}{N_{cr,v}}}$ χ_u, χ_v derived from buckling curves a and b (prEN1993-1-1:2019) Design resistance - class 4: $N_{Rd} = \frac{\chi_{min}A_{eff}f_y}{\gamma_{M_1}}$ where: $\chi_{min} = \min\{\chi_u, \chi_v\}$ χ_u, χ_v derived from buckling curves a and b (prEN1993-1-1:2019) as for class 1 to 3 cross-sections $A_{eff} = A - 2ct(1 - \rho)$ $\bar{\lambda}_p = \sqrt{\chi_{min}} \frac{c/t}{18,6\varepsilon}$ where c=h-t-r $-\rho = 1$, for $\bar{\lambda}_p \le 0.748$ $-\rho = \frac{\bar{\lambda}_p - 0.188}{\bar{\lambda}_p^2}$, for $\bar{\lambda}_p > 0.748$	prEN1993-1-1 (2019) §8.3.1.2 Slenderness of compression members A sub-paragraph should be added for angle cross-sections to use $\bar{\lambda}_b = {\bar{\lambda}_u; \bar{\lambda}_v}$		
Strong axis bending M _u prEN1993-1-1	prEN1993-1-1 (2019): §8.3.2 Uniform members in bending Curve d is used	Design resistance: $M_{u,Rd} = \chi_{LT} W_u \frac{f_y}{\gamma_{M1}}$ where: $\bar{\lambda}_{LT} = \sqrt{\frac{W_u \cdot f_y}{M_{cr}}}$ χ_{LT} as function of the LTB slenderness derived from buckling curve a. Buckling curve is given from the equations $\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \bar{\lambda}_{LT}^2}}$ but $\begin{cases} \chi_{LT} \leq 1,0 \\ \chi_{LT} \leq 1/\bar{\lambda}_{LT}^2 \end{cases}$ $\Phi_{LT} = 0,5[1 + a_{LT}(\bar{\lambda}_{LT} - 0,4) + \bar{\lambda}_{LT}^2]$ LTB may be ignored and $\chi_{LT} = 1,0$ when one of the following conditions apply: $\cdot \bar{\lambda}_{LT} \leq \bar{\lambda}_{LT,0}$ with $\bar{\lambda}_{LT,0} = 0,4$ $\cdot \frac{M_{Ed}}{M_{cr}} \leq \bar{\lambda}_{LT,0}^2$	prEN1993-1-1 (2019) §8.3.2.3 Buckling reduction factors χ_{LT} for lateral torsional buckling In Table 8.4, the proposed buckling curve d for angles should be changed to a. A sub-paragraph should be added for the definition of the buckling curves (with doubling the plateau)		

$\begin{split} & \text{Weak axis} \\ \text{N+M}_{4}\text{M}_{4}\text{M}_{4} \\ \text{N}_{2}\frac{N_{12}}{N_{12}} + k_{22}\frac{M_{124}+M_{124}}{\chi_{12}} + k_{22}\frac{M_{22}}{\chi_{12}} + k_{22}M$				
$\begin{split} & \text{Weak axis} \\ \text{Weak axis} \\ \text{prEN1993-1-1} & \text{Same with the cross-section} \\ \text{member length} \\ \text{member length} \\ \text{N+M_{q}+M_{q}} \\ N_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_$			• $\frac{N_{Ed}}{N_{bu,Rd}} > 0.5$	
$\begin{bmatrix} \text{N+M}_{4} + M_{4} \\ \frac{N+M}{2} + M_{4} \\ \frac{N_{4}}{N_{3}} + K_{4} \\ \frac{N_{4}}{N_{4}} + M_{4} \\ \frac{N_{4}}{N_{3}} \\ \frac{N_{4}}{N_{3}} + K_{4} \\ \frac{N_{4}}{N_{4}} + M_{4} \\ \frac{N_{4}}{N_{4}} \\ \frac{N_{4}$			$N_{bv,Rd} > 0,3$	
$\begin{bmatrix} \Gamma_{p} = \frac{12M_{max}}{25M_{max} + 3M_{n} + 4M_{p} + 3M_{c}} \leq 15 \\ \text{For linear moment distribution with -1} \\ \leq \Psi = \frac{M_{x}}{M_{x}} \leq 1, C_{b} = \frac{12.5}{7.5 \times 50^{b}} \\ W_{L} = a_{Lx} W_{eflx}, i = 2, 3, 4 \\ a_{2x} = 1, 5 \text{ for class 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 3 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 1 or 2} \\ a_{2x} = 1, 5 \text{ for class 3} \\ a_{4,u} = W_{eflx} M_{Mu} = p_{u}^{2} \text{ for class 4} \\ \lambda_{p} = \sqrt{2\pi t} \frac{c/t}{35.58c} \\ -p_{u} = 1, \text{ for } \lambda_{p} \geq 0.748 \\ p_{u} = \sqrt{\frac{2}{p} - 0.188}, \text{ for } \lambda_{p} > 0.748 \\ p_{u} = \frac{\lambda_{u} - 0.188}{M_{w}}, k_{u} \geq 0.748 \\ p_{u} = \frac{\lambda_{u} - 0.188}{M_{w}}, k_{u} \geq 0.748 \\ \frac{1}{25M_{wax}} + k_{vx} \frac{M_{w}}{M_{w}} k_{u} + k_{w} \frac{M_{w}}{M_{w}} k_{u}^{2}} \leq 1 \\ (\frac{N_{w}}}{M_{w}} + k_{w} \frac{M_{w}}{M_{w}} k_{u}^{2}} + k_{w} \frac{M_{w}}}{M_{w}} k_{u}^{2}} + k_{w} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ \frac{N_{w}}}{k_{w}} + k_{w} \frac{M_{w}}}{M_{w}} k_{u}^{2}} + k_{w} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ k_{wu} = \frac{c_{w}}}{\frac{1}{25M_{wax}}}} + k_{wu} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ k_{wu} = \frac{c_{w}}}{\frac{1}{25M_{wax}}}} + k_{wu} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ k_{wu} = \frac{c_{w}}}{\frac{1}{25M_{wax}}}} + k_{wu} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ k_{wu} = \frac{c_{w}}}{\frac{1}{25M_{wax}}}} + k_{wu} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ k_{wu} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} + k_{wu} \frac{M_{w}}}{M_{w}} k_{u}^{2}} \leq 1 \\ k_{wu} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} + k_{wu} \frac{M_{w}}}{M_{w}} k_{w}^{2}} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} = 1 \\ \frac{M_{wu}}}{\frac{1}{25M_{wx}}}} + \frac{k_{w}}}{\lambda_{w}}} \frac{M_{wu}}}{\lambda_{w}}} + \frac{k_{w}}}{\lambda_{w}}} \frac{M_{wu}}}{\lambda_{wu}}} + \frac{c_{w}}}{\lambda_{w}}} + \frac{c_{w}}}{\lambda_{wu}}} + \frac{c_{w}}}{\lambda_{wu}}} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} = \frac{c_{w}}}{\frac{1}{25M_{wx}}}} = \frac{c_{w}}}{\lambda_{wu}}} = \frac{c_{w}}}$			Critical LTB moment: $M_{cr} = C_b \frac{0.46 \cdot E \cdot h^2 \cdot t^2}{l}$	
N+M_4+M_V prEN1993-1-1Same with the cross-section resistance, independent of the member lengthSame with the cross-section resistance, independent of the member lengthSame as aboveWeak axis bending M, prEN1993-1-1Same with the cross-section resistance, independent of the member lengthSame with the cross-section resistance, independent of the member lengthSame as aboveWeak axis prEN1993-1-1Same with the cross-section resistance, independent of the member lengthSame with the cross-section resistance, independent of the member lengthSame as aboveN+M_4+M_V prEN1993-1-1 $\frac{N_{Ed}}{X_2 N_{Ed}} + K_{Ty} \frac{M_{YB4} + \Delta M_{YB4}}{X_{Tr} \frac{M_{YB4}}{Y_{M}}} + K_{xy}$ $\frac{\left(\frac{N_{Ed}}{N_{Ed}} + K_{xy} \frac{M_{xad}}{M_{xBd}}\right)^2 + K_{xy} \frac{M_{xBd}}{M_{xBd}}} \leq 1$ $\left(\frac{N_{Ed}}{N_{Ed}} + K_{xy} \frac{M_{xBd}}{M_{xBd}}}\right)^2 + K_{xy} \frac{M_{xBd}}{M_{xBd}}} \leq 1$ $\left(\frac{N_{Ed}}{N_{Ed}} + K_{xy} \frac{M_{xBd}}{M_{xBd}}}\right)^2 + K_{xy} \frac{M_{xBd}}{M_{xBd}}} \leq 1$ $\left(\frac{N_{Ed}}{N_{Ed}} + K_{xy} \frac{M_{xBd}}{M_{xBd}}}\right)^2 + K_{xy} \frac{M_{xBd}}{M_{xBd}}} \leq 1$ $\left(\frac{N_{xBd}}{N_{xBd}} + K_{xy} M_$			$C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 3M_A + 4M_B + 3M_C} \le 1.5$	
$\begin{split} & \sum_{\substack{n+M_n+M_n\\ \text{prEN1993-1-1}}} \sum_{\substack{n+M_n+M_n\\ \frac{N_{nM_n}+M_n}{N_{nM_n}}} + k_{n_n} \frac{M_{nM_n}}{M_{nM_n}} + k_{n_n} \frac$			For linear moment distribution with -1	
$\begin{split} W_{u} &= \alpha_{l,u} W_{el,u}, \ i = 2, 3, 4\\ \alpha_{2,u} = 1,5 \text{for class 1 or 2}\\ \alpha_{3,u} &= \left[1 + \left(\frac{26.3 + c_{1}'}{26.3 c_{1} + c_{2}'}\right) \cdot (1,5-1)\right] \text{for class 3}\\ \alpha_{4,u} &= W_{el,u} N_{el,u} = p_{*}^{2} \text{for class 4}\\ \bar{\lambda}_{p} &= \sqrt{\chi_{LT}} \frac{c_{1}'}{25.58e}\\ -p_{u} &= 1, \text{for } \bar{\lambda}_{p} \leq 0,748\\ -p_{u} &= \frac{\bar{\lambda}_{p} - 0.188}{\lambda_{p}^{2}}, \text{for } \bar{\lambda}_{p} > 0,748 \end{split}$ $\begin{split} &\text{Weak axis bending M, ptEN1993-1-1} \text{Same with the cross-section resistance, independent of the member length} \text{Same with the cross-section resistance, independent of the member length} \text{Same as above} \end{split}$ $\begin{split} &\text{Weak axis bending M, ptEN1993-1-1} \text{(2019): §8.3.3} \\ \text{Uniform members in bending and axial compression is \frac{N_{w_{R}}}{\chi_{W}} + k_{y_{T}} \frac{M_{y,Ed}}{\chi_{W}} + M_{y,Zd}}{\chi_{W}} + k_{y_{T}} \frac{M_{y,Ed}}{\chi_{W}} + k_{y_{T}} \frac{M_{y,Ed}}{\chi_{W}}$			$\leq \psi = \frac{M_2}{M_1} \leq 1, \ C_b = \frac{12.5}{7.5 + 5\psi}$	
$\begin{split} \begin{array}{c} u_{2,u} = 1,5 & \text{for class 1 or 2} \\ u_{3,u} = \left[1 + \left(\frac{2\delta_{3,u} - t}{2\delta_{3,u} - t}\right) \cdot (1,5-1)\right] & \text{for class 3} \\ u_{4,u} = W_{effu}/W_{d,u} = p_u^2 & \text{for class 4} \\ \overline{\lambda}_p = \sqrt{\chi_{4,v}} \frac{C/t}{35,58\varepsilon} \\ & -p_u = 1, & \text{for } \overline{\lambda}_p \leq 0,748 \\ & -p_u = \frac{\overline{\lambda}_p - 0,188}{\overline{\lambda}_p^2}, & \text{for } \overline{\lambda}_p > 0,748 \\ & p = \sqrt{\chi_{4,v}} \frac{C/t}{35,58\varepsilon} \\ & -p_u = \frac{\overline{\lambda}_p - 0,188}{\overline{\lambda}_p^2}, & \text{for } \overline{\lambda}_p > 0,748 \\ & p = \sqrt{\chi_{4,v}} \frac{N_{\mu}}{M_{\mu}} + \frac{N_{\mu}}{M_{\mu}} \frac{M_{\mu}}{M_{\mu}} + \frac{N_{\mu}}{M_{\mu}} \frac{M_{\mu}}{M_{\mu}} \leq 1 \\ & \text{Same with the cross-section resistance, independent of the member length} \\ \end{array}$			$W_u = \alpha_{i,u} W_{el,u}$, i = 2, 3, 4	
$ \sum_{\substack{N=M_{u}+M_{v}\\PrEN1993-1-1}} \left\{ \begin{array}{l} \sum_{\substack{n=1\\ N=M_{u}} \sum_{\substack{n=1\\ N=M_{u} \sum_{\substack{n=1\\ N=M_{u}} \sum_{\substack{n=1\\ N=M_{u} \sum_{\substack{n=1\\ N=M_{u}} \sum_{n=1$			$\alpha_{2,u} = 1,5$ for class 1 or 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\alpha_{3,u} = \left[1 + \left(\frac{26,3\varepsilon - c/t}{26,3\varepsilon - 16\varepsilon}\right) \cdot (1,5-1)\right] \text{for}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			class 3	
$\begin{split} \bar{\lambda}_{p} &= \sqrt{\chi_{LT}} \frac{\chi_{LL}}{35,58\varepsilon} \\ &- \rho_{u} = 1, \text{for } \bar{\lambda}_{p} \leq 0,748 \\ &- \rho_{u} = \frac{\bar{\lambda}_{p} - 0,188}{\lambda_{p}^{2}}, \text{for } \bar{\lambda}_{p} > 0,748 \end{split}$ $\begin{split} &- \rho_{u} = \frac{\bar{\lambda}_{p} - 0,188}{\lambda_{p}^{2}}, \text{for } \bar{\lambda}_{p} > 0,748 \\ &- \rho_{u} = \frac{\bar{\lambda}_{p} - 0,188}{\lambda_{p}^{2}}, \text{for } \bar{\lambda}_{p} > 0,748 \end{split}$ \end{split} $\begin{split} &- \rho_{u} = \frac{\bar{\lambda}_{p} - 0,188}{\lambda_{p}^{2}}, \text{for } \bar{\lambda}_{p} > 0,748 \\ &- \rho_{u} = \frac{\bar{\lambda}_{p} - 0,188}{\lambda_{p}^{2}}, \text{for } \bar{\lambda}_{p} > 0,748 \end{split}$ \end{split} \end{split} \end{split} $\begin{split} &\text{Weak axis bending } M_{v} \\ &\text{prEN1993-1-1} \end{split}$ \end{split} \end{split} $\begin{split} &\text{prEN1993-1-1} (2019): \$8.3.3 \\ &\text{Uniform members in bending and axial compression} \\ &\text{axial compression} \\ &\frac{N_{Ed}}{\chi_{v} N_{Ek}} + k_{vy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{vr}} \\ &\frac{N_{Ed}}{\chi_{v} N_{kk}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{vr}} \\ &\frac{N_{Ed}}{\chi_{v} N_{kk}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{v} N_{kk}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{M}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Ed}}{\gamma_{M}}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{L} N_{Kd}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{x}}{\chi_{L} N_{Kd}} + k_{xr}} \\ &\frac{N_{Ed}}{\chi_{L} N_{Kd}} + k_{xy} \frac{M_{x}}{\chi_{L} N_{Kd}} + k_{xr} M_{$			$\alpha_{4,u} = W_{eff,u} / W_{el,u} = \rho_u^2 \text{for class 4}$	
$\begin{array}{ c c c } & -\rho_{u} = 1, \ \mbox{for} \bar{\lambda}_{p} \leq 0.748 \\ -\rho_{u} = \frac{\bar{\lambda}_{p} - 0.188}{2\bar{k}_{p}^{2}}, \ \mbox{for} \bar{\lambda}_{p} > 0.748 \\ \hline \\ & \rho_{u} = \frac{\bar{\lambda}_{p} - 0.188}{2\bar{k}_{p}^{2}}, \ \mbox{for} \bar{\lambda}_{p} > 0.748 \\ \hline \\ & P_{u} = \frac{\bar{\lambda}_{p} - 0.188}{2\bar{k}_{p}^{2}}, \ \mbox{for} \bar{\lambda}_{p} > 0.748 \\ \hline \\ & Same with the cross-section resistance, independent of the member length \\ \hline \\ & PrEN1993-1-1 \\ & PrEN1993-1-1 (2019): \$8.3.3 \\ & Uniform members in bending and axial compression \\ & \frac{N_{Ed}}{2\sqrt{N_{Rd}}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Ed}}{\gamma_{MI}}} + k_{yz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Ed}}{\gamma_{MI}}} + k_{yz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Ed}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Ed}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + k_{xy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\sqrt{\lambda_{LT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} + k_{xz} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{V} N_{Rk}}} + \frac{N_{X}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}} + \frac{N_{y,Rd}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{\sqrt{\lambda_{TT}} \frac{M_{y,Rd}}{\gamma_{MI}}}} \\ & \frac{N_{Ed}}{$			$ar{\lambda}_{ m p} = \sqrt{\chi_{LT}} rac{t/t}{35,58arepsilon}$	
$ \begin{array}{ c c c c } & -\rho_{u} = \frac{\overline{\lambda}_{p} - 0.183}{\overline{\lambda}_{p}^{2}}, \ \text{for } \overline{\lambda}_{p} > 0,748 \\ \hline \\ \hline \\ Weak axis bending M_{v} \\ prEN1993-1-1 \end{array} \begin{array}{ c } Same with the cross-section measurement of the member length \\ \hline \\ member length \end{array} \begin{array}{ c } Same with the cross-section measurement of the member length \\ \hline \\ member length \end{array} \begin{array}{ c } Same with the cross-section measurement of the member length \\ \hline \\ member length \end{array} \begin{array}{ c } Same with the cross-section measurement of the member length \\ \hline \\ member length \end{array} \begin{array}{ c } Same with the cross-section measurement of the member length \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member length \end{array} \begin{array}{ c } Same as above \\ \hline \\ member len$			- $\rho_u = 1$, for $\overline{\lambda}_p \leq 0.748$	
Weak axis bending Mv prEN1993-1-1Same with the cross-section resistance, independent of the member lengthSame with the cross-section resistance, independent of the member lengthSame as aboveN=Mu+Mv prEN1993-1-1prEN1993-1-1 (2019): §8.3.3 Uniform members in bending and axial compression			- $\rho_u = \frac{\overline{\lambda}_p - 0,188}{\overline{\lambda}_p^2}$, for $\overline{\lambda}_p > 0,748$	
$ \begin{split} & \text{N+M}_{u} + \text{M}_{v} \\ \text{prEN1993-1-1} (2019): \$8.3.3 \\ \text{Uniform members in bending and axial compression} \\ & \frac{N_{Ed}}{\chi_{y} N_{Rk}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}} + k_{yz}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{yz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{Ed}}{\chi_{z} N_{Rk}}} \\ & \frac{N_{Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{MI}}} + k_{zz} \\ & \frac{N_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{LT}}} + k_{zz} \\ & \frac{N_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{LT}}} + k_{zz} \\ & \frac{N_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{LT}}}} + k_{zz} \\ & \frac{N_{LT} \frac{M_{y,Rk}}{\chi_{LT} \frac{M_{y,Rk}}{\chi$	Weak axis bending M _v prEN1993-1-1	Same with the cross-section resistance, independent of the member length	Same with the cross-section resistance, independent of the member length	Same as above
$\xi = \left[1 + \left(\frac{26.3\varepsilon - c/t}{26.3\varepsilon - 16\varepsilon}\right) \cdot (2 - 1)\right]$ c/t > 26.3\varepsilon: $\xi = 1$	N+M _u +M _v prEN1993-1-1	prEN1993-1-1 (2019): §8.3.3 Uniform members in bending and axial compression $\frac{N_{Ed}}{\frac{\chi_y N_{Rk}}{\gamma_{M1}}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{M1}}} + k_{yz}$ $\frac{N_{Ed}}{\frac{\chi_z N_{Rk}}{\gamma_{M1}}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{M1}}} + k_{zz}$	$ \begin{pmatrix} \frac{N_{Ed}}{N_{Rd}} + k_{uu} \frac{M_{u,Ed}}{M_{u,Rd}} \end{pmatrix}^{\xi} + k_{uv} \frac{M_{v,Ed}}{M_{v,Rd}} \leq 1 $ $ \begin{pmatrix} \frac{N_{Ed}}{N_{Rd}} + k_{vu} \frac{M_{u,Ed}}{M_{u,Rd}} \end{pmatrix}^{\xi} + k_{vv} \frac{M_{v,Ed}}{M_{v,Rd}} \leq 1 $ $ k_{uu} = \frac{C_u}{1 - \frac{N_{Ed}}{N_{cr,u}}} ; k_{uv} = C_v ; k_{vu} = C_u $ $; k_{vv} = \frac{C_v}{1 - \frac{N_{Ed}}{N_{cr,v}}} $ $ C_u = 0,6+0,4\psi_u ; -1 \leq \psi_u = \frac{M_{2u}}{M_{1u}} \leq 1 $ $ C_v = 0,6+0,4\psi_v ; -1 \leq \psi_v = \frac{M_{2v}}{M_{1v}} \leq 1 $ $ Interaction factor \xi: $ $ c/t \leq 16\varepsilon: \xi = 2 $ $ 16\varepsilon < c/t < 26,3\varepsilon: $	prEN1993-1-1 (2019) §8.3.3 Uniform members in bending and axial compression A sub-paragraph should be added for equal leg angle profiles
$c/t > 26,3\varepsilon: \qquad \xi = 1$			$\xi = \left[1 + \left(\frac{26,3\varepsilon - c/t}{2}\right) \cdot (2 - 1)\right]$	
			$c/t > 26,3\varepsilon$: $\xi = 1$	

-			
General method prEN1993-1-1	prEN1993-1-1 (2019): §8.3.4 General method for lateral and lateral torsional buckling of structural components $\chi_{op} \cdot a_{ult,k} \ge 1,0$ $\chi_{op} = \min \{\chi_b; \chi_{LT}\}$ $\alpha_{ult,k} = \frac{\sigma_{max}}{f_y} = \frac{\sigma_N}{f_y} + \frac{\sigma_{e_0}}{f_y} + \frac$	$\chi_{op} \cdot a_{ult,k} \ge 1,0$ $\chi_{op} = \min \{\chi_u; \chi_v\}$ $\alpha_{ult,k} = \frac{\sigma_{max}}{f_y} = \frac{\sigma_N}{f_y} + \frac{\sigma_{e_0}}{f_y} + \frac{\sigma_M}{f_y}$ $\overline{\lambda_{op}} = \sqrt{\frac{\alpha_{ult,k}}{\alpha_{cr,op}}}$ Where $\alpha_{cr,op}$ is the minimum load amplifier for the design loads to reach the elastic critical load of the structural component associated to <u>weak axis buckling.</u>	prEN1993-1-1 (2019) §8.3.4 General method for lateral and lateral torsional buckling of structural components A sub-paragraph should be added with clarifications of the use of general method for equal leg angle profiles
	Segment in	nstability of latice towers	
		Two models are proposed:	EN1993-3-1
Segment instability of pylons	This mode of instability is not covered by the current codes	$\begin{array}{ll} \underline{\text{Simplified model:}} & a_{cr} = \frac{2\pi^2 E I_y}{L^2.(P_1 + P_2)} \\ \hline \underline{\text{Final model:}} & a_{cr} = \frac{N_{cr}}{P_1 + P_2} \\ N_{cr} = \frac{\pi^2 E I_{y,tot}}{L^2} + \frac{3}{16} K_T L \\ & \text{KT} = \frac{4}{m^2} (2\text{R}_{\text{mean}}). \\ R_{mean} = \frac{3C}{2L_{ext}} \cdot \frac{1}{n} \sum_{i=1}^n \frac{1}{d_i^2} \\ \hline \\ \hline \\ \text{The ultimate resistance in both cases is} \\ & \frac{1}{a_u} = \frac{1}{a_{cr}} + \frac{0.96}{a_{pl}} \end{array}$	 §6.3.1 Resistance of members-compression members A sub-paragraph should be added, indicated to check the possible appearance of a segment instability. An Annex should be added, covering the calculations of the segment instability
Exterior member		$\begin{array}{llllllllllllllllllllllllllllllllllll$	$l_{l} = \frac{2 \cdot N_{pl}}{P_1 + P_2};$ s cross-section (N _{pl} =Af _y) geometrical axis of the ls; geometrical axis of both eg l _i = L/m separated by y; the accuracy of the value of m≤6 (i.e for n the leg). ction; mber of the leg;

d_i	is the horizontal distance of the longitudinal axis of the
	diagonal from the longitudinal axis of the main leg, at the i
	horizontal level.

3 Code amendments for built-up members

Table 3.1 summarizes the ANGELHY proposals for the design of built-up members. These modifications might be introduced into section 8.4.5 of prEN 1993-1-1 in order to propose a design model.

Table 3.1: Code amendments for the design of closely spaced built-up sections

Work Package 5 – Deliverable 5.1

		$\frac{\text{Interaction equations:}}{\text{The following interaction equations may be applied if at least two intermediate pairs of batten plates are used along the built-up member.}$ $\left(\frac{N_{Ed}}{\chi_{u}\frac{N_{Rk}}{\gamma_{M1}}} + k_{uu}\frac{M_{u,Ed}}{\chi_{LT}\frac{M_{u,Rk}}{\gamma_{M1}}}\right)^{\xi} + k_{uv}\frac{M_{v,Ed}}{\frac{M_{v,Rk}}{\gamma_{M1}}} \leq 1$	
Interaction between axial force and bending	<u>prEN1993-1-1 (2019):</u> No suitable design method is provided Elastic 2 nd order analysis is the only option but the imperfection amplitude is not well defined	$ \left(\frac{1}{\chi_{u} \frac{N_{Rk}}{\gamma_{M1}}} + \kappa_{uu} \frac{1}{\chi_{LT} \frac{M_{u}Rk}{\gamma_{M1}}} \right)^{\xi} + k_{uv} \frac{M_{v}Rk}{\gamma_{M1}} \leq 1 $ $ \left(\frac{N_{Ed}}{\chi_{v} \frac{N_{Rk}}{\gamma_{M1}}} + k_{vu} \frac{M_{u}Ed}{\chi_{LT} \frac{M_{u}Rk}{\gamma_{M1}}} \right)^{\xi} + k_{vv} \frac{M_{v}Ed}{\frac{M_{v}Rk}{\gamma_{M1}}} \leq 1 $ $ k_{uu} = \frac{C_{u}}{1 - \frac{N_{Ed}}{N_{cr,sv,u}}} $ $ k_{uv} = C_{v} $ $ k_{vu} = C_{u} $ $ k_{vv} = \frac{C_{v}}{1 - \frac{N_{Ed}}{N_{cr,v}}} $ $ \xi = 1,5 \text{ for SBE members} $ $ \xi = 1,1 \text{ for SBU members} $ $ N_{cr,Sv,u}: \text{ is the critical axial force for buckling about the major-axis considering the shear stiffness as determined before $ $ N_{cr,Sv,u}: \text{ is the critical axial force for buckling about the minor-axis N_{Rk}: \text{ is the characteristic value of the axial force resistance of the built-up section: 0,9W_{u}f_{y} M_{v,Rk}: \text{ is the characteristic value of the minor axis bending resistance of the built-up section: 0,9W_{v}f_{y} $	prEN1993-1-1 (2019) §8.4.5 Closely spaced- built up members
		C_u, C_v . The equivalent uniform moment factors determined as follows: $C_u = 0,6+0,4\psi_u \ge 0,4$; $-1 \le \psi_u = \frac{M_{2u}}{M_{1u}} \le 1$	
		$C_v = 0,6+0,4\psi_v \ge 0,4$; $-1 \le \psi_v = \frac{M_{2v}}{M_{1v}} \le 1$	
		χ_u, χ_v : are the reduction factors for buckling about the major/minor axis	
		χ_{LT} : Is the reduction factor for lateral torsional buckling determined based on the critical moment $M_{cr,SV}$ and reduction curve <i>a</i> as follows	

-		
	$\bar{\lambda}_{LT} = \sqrt{\frac{0.9W_u f_y}{M_{cr}}}$ $M_{cr} = C_b \pi \frac{\sqrt{EI_v GI_t}}{L}$ $I_v: is the second moment of area of the built-up member considered as integral (considering S_v = ∞) about its minor axis$	

4 References

[1] prEN1993-1-1: Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels, Comité Européen de Normalisation (CEN), 2019.

[2] EN1993-1-5: Design of steel structures - Part 1-5: Plate structural elements, Brussels, Comité Europeen de Normalisation (CEN), 2006.

[3] EN 1993-3-1: Design of steel structures - Part 3-1: Towers, musts and chimneys. Tower and masts, Brussels, Comité Européen de Normalisation (CEN), 2005.

[4] Tibolt M, Vayas I, Vlachakis K, Giquel Y, Reygner S, Bezas MZ, Jaspart JP, Demonceau JF, Deliverable 4.4: Design guide and recommendations, Research Report-ANGELHY project, 2019.

[5] Beyer, A, Bureau, A, Deliverable 3.4 Design rules for closely spaced built-up angle section members, Research Report ANGELHY project, 2020.

[6] EN 50341-1: Overhead electrical lines exceeding AC 1 kV - Part 1: General requirements - Common specifications, Brussels, CEN/CENELEC, 2015.